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Introduction and History 

The practice of fine frequency estimation of a single tone using the three samples around the DFT 

output maximizer has progressed steadily over the preceding decades.   A number of authors built on 

the early work of Kay, Rife and Boorstyn, et al.   In the middle 1990s Quinn's estimators were considered 

superior, but were computationally expensive for real-time processors of the day.   MacLeod and 

Jacobsen subsequently contributed estimators at about the same time in the late 1990s.  Jacobsen's 

offered performance similar to Quinn's with reduced complexity and a resemblance to the quadratic 

interpolator arrangement.   Jacobsen's estimator [1] was developed heuristically and presented without 

derivation. 

Much later, in 2011, Candan [2] published a complete derivation of Jacobsen's estimator using infinite 

series, and added a bias-correction term based on the derived series expressions.   This offered a 

significant reduction in the estimator bias that dominated the error performance at high SNR for low N.   

Low SNR performance was not affected.   In 2013 Candan further improved on the bias performance 

using representations of the Fourier Coefficients [3].  The result was a statistically efficient estimator 

with no bias at high SNR. 

In 2014 Liao and Lo [4] published an analysis using straightforward expressions for the DFT coefficients 

to apply a bias-correction term to a class of estimators that they referred to as QMJ, for Quinn, MacLeod 

and Jacobsen.   An additional correction term to further improve Candan's first [2] estimator was also 

developed. 

In all of the above developments a trend was apparent that there existed a general tradeoff between 

complexity and bias reduction.   Jacobsen's estimator offered the minimum complexity but with some 

remaining bias.   Candan's first estimator [2] reduced that bias with a simple correction term, and 

further reduced it in [3] at the cost of additional complexity.   Liao's bias corrections provided improved 

performance over [1][2] but with more complexity than Candan's bias-free estimator in [3].  In general, 

it was evident that the removal of the residual bias cost additional complexity compared to Jacobsen's.   

This provided an interesting implementation tradeoff where the complexity could be included or 

removed depending on the SNR range of the application and the desired bias performance. 

In 2015 Cedron proposed a new estimator [5], derived for real-valued tones, which is currently being 

evaluated.  Julien Arzi provided numerical evaluations of several estimators for comparison to the 

proposed estimator as a function of SNR with uniformly-distributed frequencies [6].  In this paper we 



examine the inter-bin performance of the proposed estimator and compare it to the previously 

mentioned estimators. 

 

Estimator Descriptions 

The estimators generally estimate , the fractional interbin correction to the discrete frequency of the 

DFT maximizer at index kp, so that f = (kp+)/N is the normalized frequency.  The DFT coefficients of the 

tone are designed Rk. The estimators are as follows, with k = kp: 

Jacobsen [1]:  Equation (1) 

       
             

                
  

 

Candan's first [2]: Equation (2) 

      
         
 
  

    

 

Candan's second [3]:  Equation (3) 

      
              

   
 

Liao [4]: Equation (4) 

      
   

  
       

   

  
   

  

   
 

 

 
   

  
     

 
 

   

 

where      is any of the Quinn, MacLeod or Jacobsen estimators, for example,    . 

Then, for the QMJ case: 

Equation (5) 

       
    

    
  

  

 
       

  

   
 

    
 

and for the Candan (2) case: 



Equation (6) 

      
   

    
  

  

 
    

   
 

where 

     
   

  
      

   

  
 
   

  
    

 
 

   

 

Cedron [5]: 

Equation (7) 

            

Equation (8) 

                                                               

Equation (9) 

                          

Equation (10) 

         
      

 

 
       

Because Cedron's estimator uses the indices, k, k-1, and k+1 directly in the calculation it estimates 

normalized frequency, f, not the bin offset, . 

 

Evaluation 

The estimators were compared using evaluation routines written in Matlab/Octave.  Ten frequencies are 

tested, sweeping a complex-valued tone in 1/10th bin increments from bin 9 to bin 10 of a 64-pt DFT, 

with 100 trials with randomized phase in the no-noise cases.  In all cases the vertical axis is in bins, and 

the horizontal axis is test number with test 1 having the frequency centered on bin 9 incrementing in 

1/10th bin steps and the 10th at bin 9.9.   The left-hand plot is estimator variance and the right-hand 

plot is estimator bias.   The estimators are identified as follows: 

Jacobsen (1) - Black circles 

Candan (2) - Blue x's 



Candan (3) - Magenta dots 

Liao applied to Jacobsen (5) - Red circles 

Liao applied to Candan (first) (6) - Green line 

Cedron (10) - Black + 

 

First the no-noise case. 

 

Figure 1.   Estimator variance (left) and bias (right) for the no-noise cases.   As expected, Jacobsen's 

estimator has the highest variance and bias in these conditions, with Candan (2) next.  The error 

variance in these cases is essentially due to the bias.  The additional corrections and complexity in the 

other estimators reduce the variance and bias. 

 

Figure 2.   This is Figure 1 with Jacobsen's and Candan's first estimators removed to improve the vertical 

scale resolution.   The red circles are Jacobsen's estimator with Liao's correction, and the green line is 

Candan's first estimator with Liao's correction.   Candan's second estimator and Cedron's error 

performance metrics are much smaller. 



 

Figure 3.   This is Figure 2 with Liao's corrected estimators removed.   Only Candan's second and 

Cedron's estimators remain and are nearly indistinguishable.   The apparent noise is likely due to the 

numeric precision of the simulations. 

 

 

Figure 4.   The variance (left) and bias (right) of all of the compared estimators at SNR = 37dB.  The 

number of trials per frequency is 1000. 

 



 

Figure 5.   The variance (left) and bias (right) of all of the compared estimators at SNR = 17dB. The 

number of trials per frequency is 1000. 

 

 

Figure 6.  The variance (left) and bias (right) of all of the compared estimators at SNR = 3dB. The number 

of trials per frequency is 5000. 

 



 

Figure 7. The variance (left) and bias (right) of all of the compared estimators at SNR = 0dB.  The number 

of trials per frequency is 5000. 

 

Conclusion 

The various estimators are compared and show similar performance at low SNR.   As SNR increases and 

the bias dominates the error performance of the simpler estimators, the more complex estimators 

maintain low bias.   In the no-noise case Candan's second estimator and Cedron's maintain much lower 

bias than the other estimators.   While Liao's corrections provide significant reduction in estimator bias 

for both Jacobsen and Candan's first estimator, it does so at the cost of much higher complexity than 

Candan's second estimator.  Although Candan's second estimator and Cedron's both have similar, very 

low, bias in the no-noise case, the complexity of Candan's estimator is substantially lower than Cedron's 

by a large margin.  At low SNR all estimators are essentially indistinguishable in performance. 
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